152 research outputs found

    Wireless Sensor Networks - An Introduction

    Get PDF

    Traffic-differentiation-based modular QoS localized routing for wireless sensor networks

    Get PDF
    A new localized quality of service (QoS) routing protocol for wireless sensor networks (WSN) is proposed in this paper. The proposed protocol targets WSN's applications having different types of data traffic. It is based on differentiating QoS requirements according to the data type, which enables to provide several and customized QoS metrics for each traffic category. With each packet, the protocol attempts to fulfill the required data-related QoS metric(s) while considering power efficiency. It is modular and uses geographical information, which eliminates the need of propagating routing information. For link quality estimation, the protocol employs distributed, memory and computation efficient mechanisms. It uses a multisink single-path approach to increase reliability. To our knowledge, this protocol is the first that makes use of the diversity in data traffic while considering latency, reliability, residual energy in sensor nodes, and transmission power between nodes to cast QoS metrics as a multiobjective problem. The proposed protocol can operate with any medium access control (MAC) protocol, provided that it employs an acknowledgment (ACK) mechanism. Extensive simulation study with scenarios of 900 nodes shows the proposed protocol outperforms all comparable state-of-the-art QoS and localized routing protocols. Moreover, the protocol has been implemented on sensor motes and tested in a sensor network testbed

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    Multimodal Deep Learning for Personalized Renal Cell Carcinoma Prognosis: Integrating CT Imaging and Clinical Data

    Full text link
    Renal cell carcinoma represents a significant global health challenge with a low survival rate. This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma by integrating CT imaging and clinical data and addressing the limitations observed in prior studies. The aim is to facilitate the identification of patients requiring urgent treatment. The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction. The feature extractor module, based on the 3D CNN architecture, predicts the ISUP grade of renal cell carcinoma tumors linked to mortality rates from CT images. A selection of clinical variables is systematically chosen using the Spearman score and random forest importance score as criteria. A deep learning-based network, trained with discrete LogisticHazard-based loss, performs the survival prediction. Nine distinct experiments are performed, with varying numbers of clinical variables determined by different thresholds of the Spearman and importance scores. Our findings demonstrate that the proposed strategy surpasses the current literature on renal cancer prognosis based on CT scans and clinical factors. The best-performing experiment yielded a concordance index of 0.84 and an area under the curve value of 0.8 on the test cohort, which suggests strong predictive power. The multimodal deep-learning approach developed in this study shows promising results in estimating survival probabilities for renal cell carcinoma patients using CT imaging and clinical data. This may have potential implications in identifying patients who require urgent treatment, potentially improving patient outcomes. The code created for this project is available for the public on: \href{https://github.com/Balasingham-AI-Group/Survival_CTplusClinical}{GitHub

    A Multi-channel EEG Data Analysis for Poor Neuro-prognostication in Comatose Patients with Self and Cross-channel Attention Mechanism

    Full text link
    This work investigates the predictive potential of bipolar electroencephalogram (EEG) recordings towards efficient prediction of poor neurological outcomes. A retrospective design using a hybrid deep learning approach is utilized to optimize an objective function aiming for high specificity, i.e., true positive rate (TPR) with reduced false positives (< 0.05). A multi-channel EEG array of 18 bipolar channel pairs from a randomly selected 5-minute segment in an hour is kept. In order to determine the outcome prediction, a combination of a feature encoder with 1-D convolutional layers, learnable position encoding, a context network with attention mechanisms, and finally, a regressor and classifier blocks are used. The feature encoder extricates local temporal and spatial features, while the following position encoding and attention mechanisms attempt to capture global temporal dependencies. Results: The proposed framework by our team, OUS IVS, when validated on the challenge hidden validation data, exhibited a score of 0.57.Comment: 4 pages, 3 figures, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    One-step approach for two-tiered constrained relay node placement in wireless sensor networks

    Get PDF
    © 2012 IEEE. We consider in this letter the problem of constrained relay node (RN) placement where sensor nodes must be connected to base stations by using a minimum number of RNs. The latter can only be deployed at a set of predefined locations, and the two-Tiered topology is considered where only RNs are responsible for traffic forwarding. We propose a one-step constrained RN placement (OSRP) algorithm which yields a network tree. The performance of OSRP in terms of the number of added RNs is investigated in a simulation study by varying the network density, the number of sensor nodes, and the number of candidate RN positions. The results show that OSRP outperforms the only algorithm in the literature for two-Tiered constrained RNs placement
    • …
    corecore